Optimising algae floc structure for more efficient separation

The presence of algal or cyanobacterial blooms in drinking water sources represents a challenge to water utilities as it creates operational problems including increasing coagulant demand and cell carry-over to downstream processes. A key barrier to cyanobacteria and algae in the water treatment plant is the separation processes, such as sedimentation and dissolved air flotation (DAF), preceded by coagulation and flocculation (C-F). However, coagulation of biological systems, such as algae, is complex and further research is required to improve understanding of the coagulation/flocculation process such that floc properties can be suitably tailored for downstream separation. The aim of this project is to develop a novel method to examine the chemical character of the floc to give additional fundamental understanding on floc composition and to lend insight into physical floc properties. Optimal floc properties will then be linked to separation processes including sedimentation and dissolved air flotation. The research will also be applied to separation systems used in an algae harvesting context for energy production.

 Image: Confocal microscopy images of fluorescently stained algal flocs analysed by Andrea Gonzalez-Torres 

Project Funding Source(s) and Industry Partners

  • Australian Postgraduate Award
  • Water Research Australia

Chief Investigators

PhD Candidate

  • Dr. Andrea Gonzalez Torres